![](https://hbr.org/resources/images/article_assets/2025/01/Jan25_31_2195590085_NOGLOBAL.jpg)
Artificial general intelligence (AGI) is a type of synthetic intelligence (AI) that matches or exceeds human cognitive capabilities across a wide range of cognitive jobs. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly goes beyond human cognitive capabilities. AGI is considered one of the definitions of strong AI.
![](https://static-content.cihms.com/wp-content/uploads/2022/03/ai-in-hospitality.jpg)
Creating AGI is a main objective of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research study and advancement jobs across 37 countries. [4]
The timeline for accomplishing AGI stays a subject of continuous debate among researchers and professionals. As of 2023, some argue that it might be possible in years or years; others keep it may take a century or longer; a minority believe it may never be attained; and another minority declares that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed concerns about the rapid development towards AGI, recommending it might be achieved earlier than numerous anticipate. [7]
There is dispute on the specific meaning of AGI and relating to whether modern large language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many professionals on AI have actually mentioned that alleviating the danger of human termination posed by AGI must be an international top priority. [14] [15] Others discover the development of AGI to be too remote to provide such a threat. [16] [17]
Terminology
![](https://cdn.mos.cms.futurecdn.net/VFLt5vHV7aCoLrLGjP9Qwm-1200-80.jpg)
AGI is likewise understood as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic intelligent action. [21]
Some scholastic sources book the term "strong AI" for computer system programs that experience sentience or awareness. [a] On the other hand, weak AI (or narrow AI) has the ability to resolve one specific issue but does not have general cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the very same sense as human beings. [a]
Related ideas include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical type of AGI that is a lot more generally smart than humans, [23] while the notion of transformative AI relates to AI having a big effect on society, for example, similar to the agricultural or industrial transformation. [24]
A framework for online-learning-initiative.org categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify 5 levels of AGI: emerging, proficient, expert, virtuoso, and superhuman. For instance, a skilled AGI is specified as an AI that outperforms 50% of knowledgeable adults in a large range of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is likewise specified but with a threshold of 100%. They consider large language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other widely known meanings, and some scientists disagree with the more popular methods. [b]
Intelligence characteristics
Researchers generally hold that intelligence is needed to do all of the following: [27]
factor, use technique, solve puzzles, and make judgments under uncertainty
represent knowledge, including sound judgment knowledge
strategy
discover
- interact in natural language
- if essential, incorporate these skills in conclusion of any given goal
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) think about extra characteristics such as creativity (the ability to form novel psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that exhibit much of these capabilities exist (e.g. see computational creativity, automated thinking, decision support group, robotic, evolutionary computation, intelligent representative). There is debate about whether modern-day AI systems possess them to a sufficient degree.
Physical traits
Other capabilities are thought about desirable in intelligent systems, as they might impact intelligence or help in its expression. These include: [30]
- the capability to sense (e.g. see, hear, and so on), and
- the ability to act (e.g. relocation and manipulate items, change location to explore, etc).
This includes the capability to discover and react to hazard. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and manipulate items, change location to check out, etc) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) may already be or end up being AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system is sufficient, supplied it can process input (language) from the external world in location of human senses. This analysis aligns with the understanding that AGI has actually never been proscribed a particular physical embodiment and thus does not demand a capability for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to confirm human-level AGI have actually been considered, consisting of: [33] [34]
The idea of the test is that the machine has to try and pretend to be a guy, by answering questions put to it, and it will just pass if the pretence is reasonably persuading. A considerable portion of a jury, who ought to not be expert about devices, should be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would require to implement AGI, since the option is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of issues that have actually been conjectured to require basic intelligence to resolve in addition to human beings. Examples include computer system vision, natural language understanding, and dealing with unexpected situations while solving any real-world problem. [48] Even a particular job like translation requires a maker to read and write in both languages, follow the author's argument (factor), comprehend the context (knowledge), and faithfully recreate the author's initial intent (social intelligence). All of these issues need to be solved at the same time in order to reach human-level device efficiency.
However, much of these tasks can now be performed by contemporary big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on numerous benchmarks for reading understanding and visual reasoning. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The very first generation of AI researchers were encouraged that artificial general intelligence was possible and that it would exist in simply a few decades. [51] AI leader Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a guy can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might produce by the year 2001. AI leader Marvin Minsky was a consultant [53] on the job of making HAL 9000 as reasonable as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the issue of producing 'expert system' will considerably be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it ended up being obvious that researchers had actually grossly underestimated the difficulty of the project. Funding agencies ended up being hesitant of AGI and put researchers under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a table talk". [58] In reaction to this and the success of professional systems, both market and government pumped money into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever satisfied. [60] For the 2nd time in twenty years, AI researchers who anticipated the impending achievement of AGI had actually been misinterpreted. By the 1990s, AI scientists had a track record for making vain promises. They ended up being hesitant to make forecasts at all [d] and prevented mention of "human level" expert system for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI accomplished industrial success and scholastic respectability by focusing on specific sub-problems where AI can produce proven results and industrial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the technology industry, and research study in this vein is greatly moneyed in both academia and industry. Since 2018 [update], advancement in this field was considered an emerging pattern, and a mature stage was expected to be reached in more than 10 years. [64]
At the turn of the century, lots of traditional AI researchers [65] hoped that strong AI might be established by combining programs that resolve numerous sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to expert system will one day meet the conventional top-down path more than half method, ready to offer the real-world proficiency and the commonsense knowledge that has actually been so frustratingly evasive in reasoning programs. Fully smart machines will result when the metaphorical golden spike is driven joining the 2 efforts. [65]
However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is actually just one practical route from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we must even try to reach such a level, given that it appears getting there would simply amount to uprooting our signs from their intrinsic meanings (consequently simply minimizing ourselves to the functional equivalent of a programmable computer). [66]
Modern synthetic general intelligence research
The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the capability to satisfy objectives in a vast array of environments". [68] This kind of AGI, defined by the capability to maximise a mathematical meaning of intelligence instead of display human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a number of visitor lecturers.
As of 2023 [upgrade], a small number of computer researchers are active in AGI research, and lots of add to a series of AGI conferences. However, progressively more researchers have an interest in open-ended knowing, [76] [77] which is the concept of permitting AI to constantly discover and innovate like human beings do.
Feasibility
As of 2023, the development and prospective achievement of AGI stays a topic of extreme debate within the AI community. While traditional consensus held that AGI was a far-off goal, recent improvements have led some scientists and market figures to declare that early types of AGI might already exist. [78] AI leader Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, of doing any work a male can do". This prediction failed to come real. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century due to the fact that it would need "unforeseeable and fundamentally unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between contemporary computing and human-level expert system is as broad as the gulf in between existing space flight and practical faster-than-light spaceflight. [80]
A more challenge is the lack of clarity in defining what intelligence involves. Does it require awareness? Must it display the ability to set goals as well as pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as preparation, thinking, and causal understanding required? Does intelligence require explicitly replicating the brain and its specific professors? Does it need feelings? [81]
Most AI researchers think strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be achieved, but that the present level of progress is such that a date can not precisely be anticipated. [84] AI professionals' views on the feasibility of AGI wax and subside. Four surveys carried out in 2012 and 2013 recommended that the mean quote amongst professionals for when they would be 50% confident AGI would show up was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% responded to with "never ever" when asked the exact same question but with a 90% self-confidence instead. [85] [86] Further current AGI progress factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year timespan there is a strong predisposition towards predicting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They analyzed 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released a detailed evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might reasonably be deemed an early (yet still incomplete) version of an artificial basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 exceeds 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has already been achieved with frontier models. They wrote that hesitation to this view comes from 4 main factors: a "healthy skepticism about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "dedication to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]
2023 likewise marked the development of large multimodal designs (large language designs capable of processing or producing several techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of models that "invest more time believing before they respond". According to Mira Murati, this ability to think before reacting represents a brand-new, extra paradigm. It enhances design outputs by spending more computing power when generating the response, whereas the design scaling paradigm enhances outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the company had attained AGI, mentioning, "In my opinion, we have already accomplished AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "better than a lot of human beings at many jobs." He also attended to criticisms that large language models (LLMs) simply follow predefined patterns, comparing their knowing process to the clinical approach of observing, assuming, and verifying. These statements have actually sparked dispute, as they count on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs demonstrate amazing flexibility, they may not totally meet this standard. Notably, Kazemi's comments came shortly after OpenAI got rid of "AGI" from the terms of its partnership with Microsoft, prompting speculation about the business's tactical intents. [95]
Timescales
Progress in artificial intelligence has historically gone through durations of rapid development separated by durations when progress appeared to stop. [82] Ending each hiatus were essential advances in hardware, software application or both to create space for additional development. [82] [98] [99] For instance, the computer hardware readily available in the twentieth century was not adequate to carry out deep learning, which requires large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that estimates of the time required before a genuinely versatile AGI is built differ from 10 years to over a century. Since 2007 [upgrade], the consensus in the AGI research study neighborhood seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have offered a wide variety of opinions on whether development will be this quick. A 2012 meta-analysis of 95 such opinions found a predisposition towards forecasting that the beginning of AGI would occur within 16-26 years for modern-day and historic forecasts alike. That paper has been criticized for how it classified viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the conventional technique used a weighted sum of ratings from various pre-defined classifiers). [105] AlexNet was concerned as the initial ground-breaker of the existing deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in first grade. An adult concerns about 100 typically. Similar tests were brought out in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language design capable of performing lots of diverse tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to comply with their security standards; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 different tasks. [110]
In 2023, Microsoft Research released a research study on an early version of OpenAI's GPT-4, competing that it displayed more general intelligence than previous AI designs and showed human-level performance in jobs covering numerous domains, such as mathematics, coding, and law. This research triggered an argument on whether GPT-4 might be thought about an early, insufficient version of artificial general intelligence, stressing the requirement for further exploration and assessment of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton specified that: [112]
The concept that this stuff might in fact get smarter than people - a couple of people thought that, [...] But the majority of people thought it was method off. And I believed it was method off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly stated that "The development in the last couple of years has actually been quite unbelievable", and that he sees no reason it would decrease, expecting AGI within a years and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would can passing any test at least in addition to people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI staff member, approximated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is thought about the most appealing course to AGI, [116] [117] entire brain emulation can work as an alternative method. With entire brain simulation, a brain model is constructed by scanning and mapping a biological brain in detail, and after that copying and mimicing it on a computer system or another computational device. The simulation design should be adequately loyal to the original, so that it acts in virtually the very same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research functions. It has actually been discussed in expert system research study [103] as a technique to strong AI. Neuroimaging technologies that could provide the needed in-depth understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will end up being offered on a similar timescale to the computing power needed to imitate it.
Early estimates
![](https://i0.wp.com/media.premiumtimesng.com/wp-content/files/2025/01/Deepseek-V3.jpg?ssl\u003d1)
For low-level brain simulation, a very powerful cluster of computers or GPUs would be needed, offered the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at numerous estimates for the hardware required to equate to the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a step utilized to rate existing supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was achieved in 2022.) He utilized this figure to forecast the needed hardware would be available sometime in between 2015 and 2025, if the exponential growth in computer power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed an especially detailed and openly available atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
![](https://imageio.forbes.com/specials-images/imageserve/6797a3cf8b4b877086f2ecef/Illustration-DeepSeek-Nvidia/960x0.jpg?format\u003djpg\u0026width\u003d960)
The artificial neuron model assumed by Kurzweil and used in many current synthetic neural network executions is easy compared to biological neurons. A brain simulation would likely have to record the in-depth cellular behaviour of biological neurons, currently comprehended just in broad summary. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would need computational powers numerous orders of magnitude bigger than Kurzweil's estimate. In addition, the quotes do not account for glial cells, which are known to contribute in cognitive procedures. [125]
A basic criticism of the simulated brain method obtains from embodied cognition theory which asserts that human personification is an important element of human intelligence and is necessary to ground meaning. [126] [127] If this theory is proper, any totally practical brain model will need to encompass more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an option, but it is unidentified whether this would be sufficient.
Philosophical perspective
"Strong AI" as defined in viewpoint
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference in between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness".
Weak AI hypothesis: An expert system system can (only) act like it believes and has a mind and consciousness.
The very first one he called "strong" because it makes a more powerful statement: it presumes something special has actually occurred to the machine that goes beyond those capabilities that we can check. The behaviour of a "weak AI" maker would be precisely similar to a "strong AI" maker, but the latter would likewise have subjective conscious experience. This usage is also common in scholastic AI research and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level artificial general intelligence". [102] This is not the exact same as Searle's strong AI, unless it is presumed that awareness is essential for human-level AGI. Academic thinkers such as Searle do not think that holds true, and to most artificial intelligence scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it in fact has mind - indeed, there would be no chance to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have numerous significances, and some aspects play substantial functions in sci-fi and the principles of synthetic intelligence:
Sentience (or "remarkable awareness"): The ability to "feel" perceptions or emotions subjectively, instead of the capability to reason about perceptions. Some philosophers, such as David Chalmers, utilize the term "consciousness" to refer exclusively to phenomenal awareness, which is roughly comparable to sentience. [132] Determining why and how subjective experience arises is known as the tough problem of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be conscious. If we are not conscious, then it does not seem like anything. Nagel uses the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had actually attained sentience, though this claim was widely disputed by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a separate person, especially to be consciously familiar with one's own ideas. This is opposed to just being the "subject of one's believed"-an operating system or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the very same way it represents whatever else)-however this is not what people generally imply when they use the term "self-awareness". [g]
These traits have an ethical measurement. AI life would give increase to concerns of well-being and legal security, similarly to animals. [136] Other elements of awareness related to cognitive abilities are likewise appropriate to the concept of AI rights. [137] Determining how to incorporate innovative AI with existing legal and social frameworks is an emergent concern. [138]
Benefits
AGI might have a wide array of applications. If oriented towards such objectives, AGI might assist reduce numerous issues on the planet such as cravings, poverty and illness. [139]
AGI might enhance performance and performance in a lot of jobs. For instance, in public health, AGI could speed up medical research, especially versus cancer. [140] It might look after the elderly, [141] and equalize access to rapid, top quality medical diagnostics. It might provide fun, cheap and tailored education. [141] The requirement to work to subsist could end up being obsolete if the wealth produced is correctly redistributed. [141] [142] This also raises the concern of the place of humans in a radically automated society.
AGI could likewise assist to make rational choices, and to prepare for and avoid disasters. It could also assist to profit of potentially disastrous innovations such as nanotechnology or environment engineering, while avoiding the associated dangers. [143] If an AGI's main objective is to avoid existential catastrophes such as human termination (which might be challenging if the Vulnerable World Hypothesis turns out to be true), [144] it could take steps to significantly minimize the risks [143] while minimizing the effect of these steps on our lifestyle.
Risks
Existential dangers
AGI may represent multiple kinds of existential threat, which are dangers that threaten "the early termination of Earth-originating smart life or the permanent and drastic damage of its capacity for preferable future advancement". [145] The risk of human extinction from AGI has been the topic of numerous disputes, but there is also the possibility that the advancement of AGI would result in a completely problematic future. Notably, it might be utilized to spread out and preserve the set of values of whoever develops it. If mankind still has moral blind areas comparable to slavery in the past, AGI might irreversibly entrench it, preventing moral development. [146] Furthermore, AGI might assist in mass surveillance and indoctrination, which might be used to produce a stable repressive worldwide totalitarian regime. [147] [148] There is also a danger for the devices themselves. If makers that are sentient or otherwise worthwhile of moral factor to consider are mass developed in the future, engaging in a civilizational path that indefinitely disregards their welfare and interests might be an existential catastrophe. [149] [150] Considering just how much AGI could enhance mankind's future and aid lower other existential threats, Toby Ord calls these existential risks "an argument for proceeding with due care", not for "deserting AI". [147]
Risk of loss of control and human termination
The thesis that AI presents an existential risk for human beings, and that this danger needs more attention, is questionable however has been endorsed in 2023 by lots of public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed widespread indifference:
So, dealing with possible futures of enormous advantages and risks, the specialists are certainly doing whatever possible to ensure the finest outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll arrive in a couple of years,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The potential fate of humanity has often been compared to the fate of gorillas threatened by human activities. The comparison specifies that higher intelligence allowed humanity to control gorillas, which are now vulnerable in manner ins which they might not have prepared for. As an outcome, the gorilla has actually become a threatened types, not out of malice, but just as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humanity which we ought to be cautious not to anthropomorphize them and analyze their intents as we would for humans. He stated that people won't be "clever enough to develop super-intelligent makers, yet ridiculously dumb to the point of offering it moronic goals without any safeguards". [155] On the other side, the principle of crucial merging recommends that nearly whatever their objectives, intelligent agents will have factors to try to make it through and acquire more power as intermediary steps to achieving these goals. And that this does not require having emotions. [156]
Many scholars who are worried about existential threat supporter for more research study into solving the "control issue" to address the concern: what types of safeguards, algorithms, or architectures can developers carry out to increase the probability that their recursively-improving AI would continue to behave in a friendly, instead of harmful, way after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which might lead to a race to the bottom of security precautions in order to release items before competitors), [159] and using AI in weapon systems. [160]
The thesis that AI can posture existential risk also has critics. Skeptics usually state that AGI is unlikely in the short-term, or that concerns about AGI distract from other concerns related to existing AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of individuals outside of the technology market, existing chatbots and LLMs are already viewed as though they were AGI, resulting in additional misconception and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an illogical belief in a supreme God. [163] Some researchers think that the communication projects on AI existential danger by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and scientists, provided a joint statement asserting that "Mitigating the danger of termination from AI ought to be an international priority along with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. workforce might have at least 10% of their work tasks impacted by the introduction of LLMs, while around 19% of workers may see at least 50% of their jobs affected". [166] [167] They consider workplace employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI could have a much better autonomy, ability to make choices, to user interface with other computer tools, but likewise to control robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of elegant leisure if the machine-produced wealth is shared, or many people can wind up badly bad if the machine-owners successfully lobby versus wealth redistribution. So far, the trend seems to be towards the second alternative, with innovation driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need governments to embrace a universal fundamental income. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain
AI effect
AI safety - Research location on making AI safe and useful
AI positioning - AI conformance to the desired goal
A.I. Rising - 2018 film directed by Lazar Bodroža
Artificial intelligence
Automated machine knowing - Process of automating the application of maker knowing
BRAIN Initiative - Collaborative public-private research effort announced by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of artificial intelligence to play different video games
Generative expert system - AI system capable of generating content in response to prompts
Human Brain Project - Scientific research project
Intelligence amplification - Use of infotech to enhance human intelligence (IA).
Machine ethics - Moral behaviours of man-made machines.
Moravec's paradox.
Multi-task learning - Solving several maker learning jobs at the exact same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of synthetic intelligence - Overview of and topical guide to expert system.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or kind of synthetic intelligence.
Transfer knowing - Machine learning strategy.
Loebner Prize - Annual AI competitors.
Hardware for expert system - Hardware specifically designed and optimized for expert system.
Weak synthetic intelligence - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the short article Chinese room.
^ AI founder John McCarthy writes: "we can not yet identify in basic what kinds of computational treatments we wish to call smart. " [26] (For a conversation of some definitions of intelligence utilized by expert system researchers, see approach of expert system.).
^ The Lighthill report particularly slammed AI's "grand goals" and led the taking apart of AI research study in England. [55] In the U.S., DARPA ended up being figured out to fund only "mission-oriented direct research, rather than standard undirected research". [56] [57] ^ As AI founder John McCarthy composes "it would be an excellent relief to the rest of the workers in AI if the creators of new basic formalisms would express their hopes in a more guarded kind than has in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As specified in a basic AI textbook: "The assertion that devices might possibly act intelligently (or, perhaps much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that makers that do so are actually thinking (rather than mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that artificial basic intelligence advantages all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is creating artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were recognized as being active in 2020.
^ a b c "AI timelines: What do specialists in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton quits Google and alerts of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad actors from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The genuine threat is not AI itself but the way we release it.
^ "Impressed by expert system? Experts state AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential dangers to humankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of extinction from AI should be an international priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts caution of risk of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating machines that can outthink us in general methods.
^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no factor to fear AI as an existential risk.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the complete series of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is changing our world - it is on all of us to make certain that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent characteristics is based upon the topics covered by significant AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reassessed: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of hard exams both AI versions have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software engineers prevented the term artificial intelligence for worry of being seen as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite development in machine intelligence, synthetic basic intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and wiki.rrtn.org Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A survey of skilled opinion. In Fundamental concerns of artificial intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retr